Abstract

An arc fault is the leading cause of electrical fire. Aiming at the problems of difficulty in manually extracting features, poor generalization ability of models and low prediction accuracy in traditional arc fault detection algorithms, this paper proposes a fault arc detection method based on the fusion of channel attention mechanism and residual network model. This method is based on the channel attention mechanism to perform global average pooling of information from each channel of the feature map assigned by the residual block while ignoring the local spatial data to enhance the detection and recognition rate of the fault arc. This paper introduces a one-dimensional depth separable convolution (1D-DS) module to reduce the network model parameters and shorten the time of single prediction samples. The experimental results show that the F1 score of the network model for arc fault detection under mixed load conditions is 98.07%, and the parameter amount is reduced by 46.06%. The method proposed in this paper dramatically reduces the parameter quantity, floating-point number and time complexity of the network structure while ensuring a high recognition rate, which improves the real-time response ability to detect arc fault. It has a guiding significance for applying arc fault on the edge side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.