Abstract
Abstract With more functionality added to future safety-critical avionics systems, new platforms are required to offer the computational capacity needed. Multi-core processors offer a potential that is promising, but they also suffer from two issues that are only recently being addressed in the safety-critical contexts: lack of methods for assuring timing determinism, and higher sensitivity to permanent and transient faults due to shrinking transistor sizes. This paper reviews major contributions that assess the impact of fault tolerance on worst-case execution time of processes running on a multi-core platform. We consider the classic approach for analyzing the impact of faults in such systems, namely fault injection. The review therefore explores the area in which timing effects are studied when fault injection methods are used. We conclude that there are few works that address the intricate timing effects that appear when inter-core interferences due to simultaneous accesses of shared resources are combined with fault tolerance techniques. We assess the applicability of the methods to currently available multi-core processors used in avionics. Dark spots on the research map of the integration problem of hardware reliability and timing predictability for multi-core avionics systems are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.