Abstract

Although successful production of fatty alcohols in metabolically engineered Escherichia coli with heterologous expression of fatty acyl-CoA reductase has been reported, low biosynthetic efficiency is still a hurdle to be overcome. In this study, we examined the characteristics of two fatty acyl-CoA reductases encoded by Maqu_2220 and Maqu_2507 genes from Marinobacter aquaeolei VT8 on fatty alcohol production in E. coli. Fatty alcohols with diversified carbon chain length were obtained by co-expressing Maqu_2220 with different carbon chain length-specific acyl-ACP thioesterases. Both fatty acyl-CoA reductases displayed broad substrate specificities for C12-C18 fatty acyl chains in vivo. The optimized mutant strain of E. coli carrying the modified tesA gene and fadD gene from E. coli and Maqu_2220 gene from Marinobacter aquaeolei VT8 produced fatty alcohols at a remarkable level of 1.725g/L under the fermentation condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.