Abstract

A series of novel scaffolds Thiadiazolyl Piperidine, Thiadiazolyl Piperazine, thiadiazolidine, Thiadiazolyl thiazole and Thiadiazolyl-imidazole-Thione were synthesized from cheap, available and biologically active stearic acid. 2-amino-5-heptadecyl 1,3,4-thiadiazole reacts with chloroacetyl chloride and produced 2-choloro-N-(5-heptadecyl-1,3,4-Thiadiazole-2-yl) acetamide. Which allowed to react with Piperidine, Piperazine, urea and/or Thiourea and Potassium thiocyanate, and the latest scaffolds have been synthesized, respectively, and the structures of these compounds were established by elemental analysis, MS, IR and 1H-NMR spectral data. The antimicrobial activities of the synthesized compounds were evaluated in-vitro against strains of gram +ve, gram -ve bacteria and fungi. Nonionic surfactant were obtained by addition of different moles of propylene oxide (3,5,7 mole) to the synthesized compounds bearing an active hydrogen. Physico-chemical and surface properties as well as biodegradability of the synthesized non-ionic surfactants were evaluated.

Highlights

  • A series of novel scaffolds Thiadiazolyl Piperidine, Thiadiazolyl Piperazine, thiadiazolidine, Thiadiazolyl thiazole and Thiadiazolyl-imidazole-Thione were synthesized from cheap, available and biologically active stearic acid. 2-amino-5-heptadecyl 1,3,4-thiadiazole reacts with chloroacetyl chloride and produced 2-choloro-N-(5-heptadecyl-1,3,4-Thiadiazole-2-yl) acetamide

  • Which allowed to react with Piperidine, Piperazine, urea and/or Thiourea and Potassium thiocyanate, and the latest scaffolds have been synthesized, respectively, and the structures of these compounds were established by elemental analysis, MS, IR and 1H-NMR spectral data

  • All mass spectra of the synthesized compounds were recorded on a Shimadzu GCMS-QP-1000EXmass spectrophotometer, IR spectra (KBr disk) of the new compounds were checked on JASCO FT/IR-4100 (Japan). 1H-NMR spectra were recorded in Varian Mercury VXR-300 spectrometer using TMS as internal reference

Read more

Summary

Introduction

1,3,4-Thiadiazole and its derivatives continue to be of great interest owing to their great pharmaceutical and industrial importance. Addition of the long alkyl chain (hydrophobic part) and propylene oxide (lipophilic part), to the Thiadiazole nucleus increases its solubility in water and enhances the potential of their usage as nonionic surfactants. Surfactants are one of the most important and widely used products in industry. This prompted us to continue our research program about the utilization of fatty acids in heterocyclic synthesis, to synthesize novel nonionic surfactants [13]-[19]. We report the synthesis and some reactions of 2-chloro-N-(5-heptadecyl-1,3,5 Thiadiazole-2-yl) acetamide (2) with piperidine, piperazine, urea, Thiourea and Potassium thiocyanate propylene oxide was added in quantitative amounts to produce new types from Nonionic surfactants

Materials
Structures Elucidation
Abdelmajeid et al DOI
2.12. Antimicrobial Activities
2.13. Propoxylation
Cloud Point
Emulsion Stability
Efficiency
Maximum Surface Excess Γmax
Hydrolysis Resistance
Biodegradability of the Synthesized Surfactants
Results and Discussion
Antimicrobial Activities
Nonionic Surfactants from the Synthesized Compounds
Surface and Interfacial Tensions
Wetting Time
Foaming Power
CMC Measurements
6.12. Maximum Surface Excess Γmax
6.14. Hydrolysis Resistance
6.15. Biodegradability
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.