Abstract

A green and efficient microemulsion liquid chromatographic (MELC) method using fatty acid as co-surfactant and electrochemical detection was established and validated for the determination of four caffeoylquinic acid isomers and caffeic acid in honeysuckle samples. The influences of each individual component within the isocratic oil-in-water (O/W) microemulsion mobile phase were systematically investigated, such as the type and concentration of co-surfactant, concentration of sodium dodecyl sulphate (SDS), organic modifier addition, type and concentration of oil phase, pH and detection voltage. Results indicated that excellent resolution was achieved using 3.0% w/v of propionic acid, 0.5% w/v of ethyl acetate, 1.0% w/v of SDS, 5% w/v acetonitrile, 90.5% v/v of water and 25 mM sodium dihydrogen phosphate at pH = 3 as microemulsion mobile phase and 0.8 V as the optimal voltage value. Under the optimal condition, analytical performance of developed method was evaluated. The detection limits were below 17.3 ng/mL and intra-day and inter-day precisions by relative standard deviations (RSD%) were between 0.5% and 3.6%. Satisfactory recovery (in the range of 83.8–109.1%) with good repeatability lower than 4.7% (n = 3) was obtained. Therefore, the developed O/W MELC method was rapid, precise and accurate for simultaneous determination of neochlorogenic acid, chlorogenic acid, isochlorogenic acid A and isochlorogenic acid C in honeysuckle samples, with contents of 2.6, 28.7, 18.1 and 5.2 mg/g, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call