Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne RNA virus that causes epidemics of debilitating disease in tropical and sub-tropical regions with autochtonous transmission in regions with temperate climate. Currently, there is no licensed vaccine or specific antiviral drug available against CHIKV infection. In this study, we examine the role, in the CHIKV viral cycle, of fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1), two key lipogenic enzymes required for fatty acid production and early desaturation. We show that both enzymes and their upstream regulator PI3K are required for optimal CHIKV infection. We demonstrate that pharmacologic manipulation of FASN or SCD1 enzymatic activity by non-toxic concentrations of cerulenin or CAY10566 decreases CHIKV genome replication. Interestingly, a similar inhibitory effect was also obtained with Orlistat, an FDA-approved anti-obesity drug that targets FASN activity. These drugs were also effective against Mayaro virus (MAYV), an under-studied arthritogenic Old world Alphavirus endemic in South American countries with potential risk of emergence, urbanization and dispersion to other regions. Altogether, our results identify FASN and SCD1 as conserved druggable cofactors of Alphavirus genome replication and support the broad-spectrum activity of drugs targeting the host fatty acids metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.