Abstract
1α,25(OH)2D3 (vitamin D3) is crucial for mineral homeostasis in mammals, but the precise effects of 1α,25(OH)2D3 in adipose tissue remain to be clarified invivo. The initial 25-hydroxylation is catalyzed by liver microsomal cytochrome P450 2R1 (CYP2R1), which is conserved in vertebrates. To probe the physiological function(s) of 1α,25(OH)2D3 in teleosts, we generated two independent cyp2r1-deficient zebrafish lines. These mutants exhibit retarded growth and increased obesity, especially in the visceral adipose tissue (VAT). These defects could be rescuedwith 25(OH)D3 treatments. ChIP-PCR analyses demonstrated that pgc1a is the target of the vitamin D receptor in the liver and VAT of zebrafish. Significantly decreased protein levels of Pgc1a, impaired mitochondrial biogenesis, and free fatty acid oxidation are also observed in the cyp2r1 mutant VAT. Our results demonstrate that regulation of 1α,25(OH)2D3 during lipid metabolism occurs through the regulation of Pgc1a for mitochondrial biogenesis and oxidative metabolism within zebrafish VAT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.