Abstract

Green-lipped mussels Perna viridis, collected from Peng Chau, Hong Kong were allotted into two treatment groups, each containing three experimental tanks. The first treatment group comprised of mussels fed with the diatom Thalassiosira pseudonana only, whereas the second treatment group contained mussels fed with the marine rotifer Brachionus plicatilis, which was in turn fed with diatom T. pseudonana. The mussels were fed two times each day over the experimental period of 14 days. On Days 4, 7 and 14, three mussels were collected from each tank of each treatment group and treated as a single replicate. Fatty acid profiles of diatoms, marine rotifers and the three organs (digestive gland, mantle margin and adductor muscle) of the two mussel groups were analyzed. Results showed that monosaturated fatty acid (MUFA) 16:1n7 was conserved along the food chain among diatoms, marine rotifers and green-lipped mussels. This suggested that 16:1n7 or the ratio of 16:1n7 to saturated fatty acid (SFA) 16:0 can be a trophic marker for diatom T. pseudonana and elevated amounts of 16:1n7 in mussels can reflect the dominance of diatoms in its diet. The present results also showed that rotifers could accumulate MUFA 18:1n7 and PUFA 20:4n6 which were transferred up to mussels, especially 18:1n7, as zooplankton have the ability to synthesize or actively accumulate certain fatty acids that they need for growth or reproduction. There was an increase in the amount of 18:1n7 in the digestive gland of mussels fed with rotifers but the level of this fatty acid remained unchanged in those fed with diatoms, further confirming that 18:1n7 can be used as a marker for the presence of rotifers in trophic relationship studies. The relatively faster responses in the digestive gland of mussels to acquire the fatty acid signatures from their food suggested that the fatty acid profiles in the digestive gland can be a good marker to show a short-term fluctuation of food conditions in the marine environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.