Abstract

Sustained release capsule formulations based on three components, drug, water-soluble polymer, and water-insoluble fatty acid, were developed. Theophylline, acetaminophen, and glipizide, representing a wide spectrum of aqueous solubility, were used as model drugs. Povidone and hydroxypropyl cellulose were selected as water-soluble polymers. Stearic acid and lauric acid were selected as water-insoluble fatty acids. Fatty acid, polymer, and drug mixture was filled into size #0 gelatin capsules and heated for 2 h at 50 °C. The drug particles were trapped into molten fatty acid and released at a controlled rate through pores created by the water-soluble polymer when capsules were exposed to an aqueous dissolution medium. Manipulation of the formulation components enabled release rates of glipizide and theophylline capsules to be similar to commercial Glucotrol XL tablets and Theo-24 capsules, respectively. The capsules also exhibited satisfactory dissolution stability after exposure to 30 °C/60% relative humidity (RH) in open Petri dishes and to 40 °C/75% RH in closed high-density polyethylene bottles. A computational fluid dynamic-based model was developed to quantitatively describe the drug transport in the capsule matrix and the drug release process. The simulation results showed a diffusion-controlled release mechanism from these capsules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call