Abstract

A major hurdle in cancer treatment is the precise targeting of drugs to the cancer site. As many cancer cells overexpress the transferrin receptor (TfR), the transferrin (Tf)-TfR interaction is widely exploited to target cancer cells. In this study, novel amphiphilic apo-Tf stearic acid (TfS) conjugates were prepared and characterized by Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, and trinitrobenzenesulfonic acid (TNBS) assay. The prepared TfS conjugates were readily self-assembled in water to form nanoparticles (NPs), consisting of TfS as a core of NPs, whose sizes and zeta potentials were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a particle size analyzer. Hydrophilic water-soluble doxorubicin (DOX) was chosen as a model drug. DOX-loaded TfS NPs (NP+DOX), prepared by the adsorption of DOX on the NP surface via the incubation method, were analyzed for their cell targeting and killing efficiencies in TfR-overexpressing A549 and HCT116 cell lines by MTT assay, confocal microscopy, and fluorescence assisted cell sorting (flow cytometry). The data showed that NP+DOX exhibited improved cancer cell targeting and killing properties compared to that reported for free DOX. Further, the cytotoxic efficiency of NP+DOX was comparable to that of PEGylated liposomal product, Doxil®, while its cellular uptake was higher than that of Doxil®. Thus, this novel receptor-based TfS NP drug delivery system has great potential to target TfR-overexpressing cancer cells without off-target effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.