Abstract

Fat-suppression techniques are useful in MR imaging to eliminate strong signals from fatty tissues that interfere with signals from adjacent areas. Various methods of fat suppression have been devised, but when suppression of fat is used in combination with contrast enhancement employing paramagnetic agents (e.g., gadopentetate dimeglumine), the definition of normal anatomic structures is significantly improved, enhancing lesions become more conspicuous, and lesional margins are better defined in regions of the body with large amounts of fat, whose signal is suppressed. Contrast-enhanced fat-suppressed T1-weighted images provide more information than do conventional MR images. In this review, several types of fat-suppression techniques and their clinical applications in neuroradiology are described. Gadopentetate dimeglumine-enhanced, fat-suppressed T1-weighted images appear to have significant advantages over conventional T1-weighted contrast-enhanced images and should replace them in imaging regions of the body where large amounts of fat are present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call