Abstract

Bladder cancer (BLCA) is ranked among the main causes of mortality in male cancer patients, and research into targeted therapies guided by its genomics and molecular biology has been a prominent focus in BLCA studies. Fatty acid transporter protein 2 (FATP2), a member of the FATPs family,is a key contributor to the progression of cancers such as hepatocellular carcinomas and melanomas.However,its role in BLCA remains poorly understand. This study delved into the function of FATP2 in BLCA through a succession of experiments in vivo and in vitro, employing techniques as quantitative real-time polymerase chain reaction (qRT-PCR), RNA sequencing, transwell assays, immunofluorescence, western blot,and others to dissect its mechanistic actions. The findings revealed that an oncogenic function is executed by FATP2 in bladder cancer, significantly impacting the proliferation and migration capabilities, thereby affecting the prognosis of BLCA patients. Furthermore, A suppression that relies on both time and concentration of BLCA proliferation and migration, trigger of apoptosis, and blockage of the cell cycle at the G2/M phase were observed when the inhibitor of FATP2, Lipofermata, was applied. It was unveiled through subsequent investigations that ATF3 expression is indirectly promoted by Lipofermata through the inhibition of FATP2, ultimately inhibiting the signal transduction of the PI3K/Akt/mTOR pathway. This effect was also responsible for the inhibitory impact on BLCA proliferation. Therefore, FATP2 emerges as an auspicious and emerging molecular target with potential applications in precision therapy in BLCA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call