Abstract

This study tested the hypothesis that skeletal muscle contraction activates nuclear factor-kappaB (NF-kappaB), a putative regulator of muscle protein breakdown. Muscle biopsies were obtained from the vastus lateralis of healthy humans before, immediately after, and 1 h after fatiguing resistance exercise of the lower limbs. Biopsies were analyzed for nuclear NF-kappaB DNA binding activity by using electrophoretic mobility shift assay. NF-kappaB activity, measured immediately after exercise, was less than preexercise activity; after 1-h recovery, activity returned to preexercise levels. In follow-up studies in adult mice, basal NF-kappaB activity varied among individual muscles. NF-kappaB activity in diaphragm fiber bundles was decreased after a 10-min bout of fatiguing tetanic contractions in vitro. NF-kappaB activity in soleus was increased by 12 days of unloading by hindlimb suspension; this increase was reversed by 10 min of fatiguing exercise. These data provide no support for our original hypothesis. Instead, acute fatiguing exercise appears to decrease NF-kappaB activity in muscle under a variety of conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.