Abstract
Four push out tests were conducted to assess the structural performance of a welded demountable shear connector (WDSC) under high-cycle fatigue loading. The primary failure mode observed was stud fracture at the base. The presence of grout inside the tube significantly increased the WDSC's fatigue life by 5.4 times. The study also analysed stiffness degradation and relative slip evolution during fatigue cycles. Two finite element-based approaches were employed for fatigue life prediction: the critical plane method for fatigue crack initiation life and fracture mechanics for crack propagation life. Based on the experimental and numerical results, fatigue life prediction formulas (Wöhler curves) are proposed for WDSCs with and without grout to aid in predicting fatigue failure in fatigue-sensitive structural designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.