Abstract

This study evaluated the shear stress presented in glass fiber posts with parallel fiber (0°) and different coronal diameters under fatigue, fracture resistance and FEA. 160 glass-fiber posts (N=160) with eight different coronal diameters were used (DT=double tapered, number of the post=coronal diameter and W=Wider - fiber post with coronal diameter wider than the conventional): DT1.4; DT1.8W; DT1.6; DT2W; DT1.8; DT2.2W; DT2; DT2.2. Eighty posts were submitted to mechanical cycling (3×106 cycles; inclination: 45°; load: 50N; frequency: 4Hz; temperature: 37°C) to assess the surviving under intermittent loading and other eighty posts were submitted to fracture resistance testing (resistance [N] and shear-stress [MPa] values were obtained). The eight posts types were 3D modeled (Rhinoceros 4.0) and the shear-stress (MPa) evaluated using FEA (Ansys 13.0). One-way ANOVA showed statistically differences to fracture resistance (DT2.2W and DT2.2 showed higher values) and shear stress values (DT1.4 showed lower values). Only the DT1.4 fiber posts failed after mechanical cycling. FEA showed similar values of shear stress between the groups and these values were similar to those obtained by shear stress testing. The failure analysis showed that 95% of specimens failed by shear. Posts with parallel fiber (0°) may suffer fractures when an oblique shear load is applied on the structure; except the thinner group, greater coronal diameters promoted the same shear stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.