Abstract

The fatigue limits and fracture characteristics for a Pd-Cu-Ga alloy and a Pd-Ga alloy were studied. The alloys were cast into tensile test bars with gauge diameter of 3 mm and gauge length of 15 mm, and the surfaces of the castings were neither air-abraded nor polished after removal from the investment. Specimens were prepared from all-new metal (not previously melted), a combination of 50% new metal and 50% old metal (previously melted one time) and 100% old metal. The cast bars were subjected to heat treatment simulating the complete firing cycles for dental porcelain, and fatigued in air at room temperature under uniaxial tension-compression stress at 10 Hz and a ratio of tensile stress amplitude to compressive stress amplitude (R-ratio) of -1. The alloy microstructures and fracture surfaces were examined with a scanning electron microscope (SEM). Results showed that the fatigue limits at 2 x 10(6)cycles of the Pd-Cu-Ga and Pd-Ga alloys were approximately 0.20 and 0.15 of their 0.1% yield strength (YS) in tension, respectively. The fatigue resistance for specimens from both alloys containing 50% old metal and 50% new metal was comparable to that of specimens containing all-new metal, although this decreased dramatically for Pd-Cu-Ga alloy specimens containing all-old metal. The fatigue resistance of the Pd-Cu-Ga alloy subjected to heat treatment simulating the porcelain firing cycles was not adversely affected by remnants of the original as-cast dendritic microstructure that remained in the relatively large test specimens. A longer heat treatment than recommended by the manufacturer for the porcelain firing cycles is needed to completely eliminate the as-cast dendritic structure in these specimens. The Pd-Cu-Ga alloy exhibited superior fatigue resistance to the Pd-Ga alloy, which has an equiaxed-grain microstructure and lower yield strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.