Abstract

The shell-to-bottom joint of hydrocarbon storage tanks is a critical location which may experience fatigue cracking and requires evaluation of the local cyclic stresses especially in the case of elevated temperature tanks. The fill/draw down cycle of the stored liquid causes low cycle fatigue near this joint and hence a fatigue evaluation is recommended. The peak alternating stress at this location, used to enter the fatigue curves is currently determined using a pseudo-elastic analysis that represents strain range due to inelastic deformations. API 650 employs beam on elastic foundation theory for this analysis. This theory is being used for tanks resting fully on earthen foundation as well as those on concrete ring wall. This paper studies the validity of using this theory for tanks with concrete ring wall foundation which are much more rigid compared to earthen foundations. Some of the difficulties in the current practice are highlighted. An alternative to the current model is presented for the determination of stresses in such tanks. The results are validated using finite element analysis. The results show that the current practice needs to be revised or rejustified in an alternative manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call