Abstract

This paper investigates experimentally the fatigue strength of high-strength steel, which has undergone the normal shipyard production process of plasma cutting, grinding, and sandblasting. The study includes steels with the yield strength of 355 and 690 MPa. The tested specimens are of dog-bone shape and represent the large-scale situation of a cruise ship balcony opening corner, loaded in shear or tension. The influence of surface roughness, internal inclusions, hardness, and residual stress on the fatigue strength are studied and discussed. Compared to the design curve as well as to the untreated surfaces, the results show significantly improved fatigue strength under constant amplitude loading at a load ratio of R = 0.1. However, very flat or even rising slope of the S-N curve indicates variations in the material and surface quality as well as in the residual stress. Surprisingly, internal defects even up to 100 μm in size did not decrease the fatigue strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.