Abstract
The sensitivity of the computed cycles-to-failure and other lifing estimates to the various input parameters is a valuable, yet largely unexploited, aspect of a fatigue lifing analysis. Two complex variable sensitivity methods, complex Taylor series expansion (CTSE) and Fourier differentiation (FD), are adapted and applied to fatigue analysis through the development of a complex variable fatigue analysis software (CVGROW). The software computes the cycles-to-failure and the sensitivities of the computed cycles-to-failure with respect to parameters of interest such as the initial crack size, material properties, geometry, and loading. The complex variable methods are shown to have advantages over traditional numerical differentiation in that more accurate and stable first and second order derivatives are obtained using CTSE and more accurate and stable higher order derivatives are obtained using FD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.