Abstract

The mechanical properties and fatigue responses of Ti/APC-2 neat and nanocomposites with inclined single-edged cracks due to tensile and cyclic tests at elevated temperature were investigated. Two types of composite laminates [Ti/(0/90)s/Ti] were fabricated with and without (W/WO) nanoparticles SiO2 of optimal 1 wt.%. The geometry and dimensions of specimens were L × W × t = 240 × 25 × 1.55 mm3. The cracks were of constant length 3 mm and width 0.3 mm. The inclined angles were 0°, 45°, and 60°. Both the tensile and cyclic tests were conducted at elevated temperatures 25℃ (RT), 100℃, 125℃, and 150℃. From the tensile tests we obtained the load vs. displacement curves for both types of laminates with varied inclinations at elevated temperatures. Next, we received the applied load vs. cycles curves for the same laminates with inclined cracks at the corresponding temperature due to cyclic tests. According to the experimental data of both tensile and cyclic tests the mechanical properties, such as strength, stiffness, and life, decreased as the temperature rises. The greater the inclined angles were, the greater the strength and stiffness were. Similarly, the fatigue life was in the same trend. However, the effect of inclined angle on mechanical properties was more strong than those of temperature. The mechanical properties of nanocomposite laminates were higher than those of neat composite laminates, but not significant. The main reason was that the enhancement of spreading nano-powder silica on the laminate interfaces did not effectively eliminate the stress intensity at the crack tip locally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.