Abstract

Novel data obtained through experimental investigation into the fatigue response of 350WT steel, subjected to semi-random loading, comprised of various combinations of intermittent tensile overloads and compressive underloads are presented. An effective model for predicting the fatigue response is also introduced. For that, the capabilities of some of the currently available models are investigated and then an exponential delay model, being capable of accounting for the effects of not only overload ratio, but also stress ratio and overload/underload ratio is introduced. Since most variable amplitude models are based on a constant amplitude model, efforts were also expended to identify a constant amplitude fatigue crack growth model that would be easy to use, requiring the calibration of few (if any) empirical curve-fitting parameters. The integrity of a selected model is examined and results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.