Abstract

Introducing self-healing properties into hydrogels can prolong their application lifetime. However, achieving mechanical strength without sacrificing self-healing properties is still a major challenge. We prepared a series of zwitterionic polymer hydrogels by random copolymerization of zwitterionic ionic monomer (SBMA), cationic monomer (DAC) and hydrophilic monomer (HEMA). The ionic bonds and hydrogen bonds formed in the hydrogels can efficiently dissipate energy and rebuild the network. The resulting hydrogels show high mechanical strength (289-396 KPa of fracture stress, 433-864 % of fracture stress) and have great fatigue resistance. The hydrogel with a 1 : 1 molar ratio of SBMA:DAC possesses the best self-healing properties (self-healing efficiency up to 96.5 % at room temperature for 10 h). The self-healing process is completely spontaneous and does not require external factors to assist. In addition, the hydrogel also possesses notch insensitivity with a fracture energy of 12000 J m-2 . After combining the conductivity of RGO aerogel, the hydrogel/RGO composites show good strain sensitivity with high reliability and self-healing ability, which has certain significance in broadening the application of these zwitterionic hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.