Abstract

In this study, metal inert gas welding (MIG) was applied to 4 mm thick 6005A-T6 aluminum alloy welding. Compared with other parts, the hardness of the weld zone (WZ) was the lowest, about 67 HV. There was the Softening in WZ, which might make WZ the weakest zone. Then, fatigue tests were carried out on MIG welded joints. All the fatigue specimens fractured at the weld toe of the lap joint, and the fracture was characterized by a cleavage fracture. Crack closure induced by oxide was observed during the steady propagation of the fatigue crack. Impurities hindered crack propagation, changed the direction of crack propagation, and appeared in stepped fatigue strip distribution morphology; in the process of the main crack propagation, the initiation and propagation of small cracks were easily restricted and hindered by the main crack, which slowed down the propagation rate and even stopped the propagation directly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.