Abstract

This article deals with the effect of strain-assisted tempering (SAT) on the fatigue properties of 54SiCr6 steel used for spring steel wires in a wide variety of automotive applications, including coil springs. This steel spring wire is extremely strong, having a high elastic limit and yield point, giving the steel excellent energy accumulation and fatigue properties. This combination opens up new possibilities in helical and cylindrical coil spring design, resulting in the reduction of both size and weight. Lightweight coil springs lead to improvements in fuel consumption, stability and vehicle traction. A large plastic deformation and SAT were applied to enhance the yield point of the study material. Improvements in the static and cyclic properties of steel springs were investigated using tensile tests and 3PB fatigue tests at ambient temperature. In addition, an advanced laser shock peening (LSP) process was employed to increase the fatigue resistance of the SAT material. The results presented here show great improvements in the static and fatigue properties over commercial steel treatment. The material quality of the wires was evaluated to be insufficient for further processing with cold coiling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.