Abstract

An experimental study of high-pressure waterjet peening on 7075-T6 aluminum alloy was conducted to investigate the effects of waterjet on high-cycle fatigue life and fatigue crack growth. Unnotched hourglass-shaped circular cross section test specimens were fatigue tested in completely reversed rotating bending R=Smin/Smax=−1 to determine fatigue life behavior (S-N curves). Single-edge-notched flat tensile test specimens were tested in the tension-tension fatigue crack growth tests R=Smin/Smax=0.1 to determine fatigue crack propagation behavior (da/dN versus ΔK). Surface characteristics and fracture surfaces were evaluated by scanning electron microscopy (SEM). Results show that waterjet peening can increase high-cycle fatigue life, delay fatigue crack initiation, and decrease the rate of fatigue crack propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call