Abstract

This contribution focuses on the nitriding of hierarchically porous titanium scaffolds to enhance their fatigue behaviour. Firstly, recent experimental findings that demonstrate the benefits of intra-filament porosity in improving fatigue resistance are discussed, providing details on crack growth shielding micromechanisms. Subsequently, the study explores the application of titanium scaffolds nitriding as a promising technique to prolong fatigue crack initiation. The scaffolds, prepared using the direct ink writing method with intra-filament porosity of ~ 6% and inter-filament porosity of ~ 68%, underwent gas nitriding at 1100 °C for 2 h. This process resulted in the formation of a consistent 42 μm thick nitriding case across the entire structure. Preliminary experiments showed a minimal decrease in fatigue strength within the low cycle fatigue region, attributed to the fracturing of a thick brittle compound zone under high applied loading. These results suggest that nitriding has the potential to improve fatigue performance after process optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call