Abstract
Recent increases in bridge design loading requirements have highlighted the need for fast, efficient, and durable strengthening methods. External steel plate bonding provides a satisfactory solution, but carbon fiber reinforced plastic (CFRP) offers the added advantages of resistance to corrosion, low weight, and high mechanical strength. This paper examines the fatigue performance of CFRP-strengthened concrete beams as part of a project investigating the use of CFRP as an alternative to steel. Five reinforced concrete beams were tested in fatigue; two control beams and three strengthened with externally bonded CFRP plates. Three loading options were used: (1) apply the same loads to both plated and unplated beams, (2) apply loads to give the same stress range in the rebar in both beams, and (3) apply the same percentage of the ultimate load capacity to each beam. Fatigue fracture of the internal reinforcement steel would appear to be the dominant factor governing failure, and it would appear reasonable to expect the same fatigue life for plated and unplated beams with comparable values of stress range in the steel bar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.