Abstract

Fatigue design rules for welds in the ASME Boiler and Pressure Vessel Code are based on the use of Fatigue Strength Reduction Factors (FSRF) against a Code-specified fatigue design curve generated from smooth base metal specimens without the presence of welds. Similarly, Stress Intensification Factors (SIF) that are used in the ASME B31 Piping Codes are based on component S-N curves with a reference fatigue strength based on straight pipe girth welds conducted by Markl et al in 1950s. Typically, the determination of either the FSRF or SIF requires extensive fatigue testing to take into account the stress concentration effects associated with various types of component geometry, weld configuration, and loading conditions. As the fatigue behavior of welded joints is being better understood, it has been generally accepted that the difference in fatigue lives from one type of weld to another is dominated by the difference in stress concentration. However, general finite element procedures are currently not available for effective determination of such stress concentration effects. This is mainly due to the fact the stress solutions at a notch (e.g., at weld toe) are strongly influenced by mesh size at and near a weld, resulted from notch stress singularity. In this paper, a mesh-insensitive structural stress method is used to re-evaluate the S-N test data ranging from Markl et al in 1950s, to those by Heald and Kiss on nuclear piping in 1970, to the most recent piping weld S-N data by Scavuzzo et al in 1998. The major findings are as follows: (a) The mesh-insensitive structural stress method provides a simple and effective mean for characterizing stress concentrations at vessel and pipe welds. (b) The structural stress based parameter provides an effective measure of stress intensity at welds, which can be related to fatigue lives. (c) Once the mesh-insensitive structural stress are used, the S-N data processed thus far can be reasonably consolidated into one narrow band. Therefore, single master S-N curve for vessel and piping welds can now be established, regardless of piping weld types or geometries (straight pipe girth welds, different types of flange welds, elbow welds, Mitre bends, etc.), and can be used to general a master fatigue design curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.