Abstract

The damage mechanisms in fretting tests are wear and fatigue cracking. The gradients of the stress and strain fields are quite high under the contact, so that the typical associated lengths can be compared to grain size. Since the microstructure size is not negligible when compared to the length associated to the loadings, it seems reasonable to explicitly represent the grains in the computations. This is proposed in this paper: a polycrystal plasticity model is used for the case of a disk-plane contact with two bodies made of titanium alloy. The simulations corresponding to a material response fretting map are compared to fretting experiments. The fatigue prediction is made by means of the Dang Van high cycle fatigue parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.