Abstract
AbstractNeural network (NN) models have significantly impacted fatigue‐related engineering communities and are expected to increase rapidly due to the recent advancements in machine learning and artificial intelligence. A comprehensive review of fatigue modeling methods using NNs is lacking and will help to recognize past achievements and suggest future research directions. Thus, this paper presents a survey of 251 publications between 1990 and July 2021. The NN modeling in fatigue is classified into five applications: fatigue life prediction, fatigue crack, fatigue damage diagnosis, fatigue strength, and fatigue load. A wide range of NN architectures are employed in the literature and are summarized in this review. An overview of important considerations and current limitations for the application of NNs in fatigue is provided. Statistical analysis for the past and the current trend is provided with representative examples. Existing gaps and future research directions are also presented based on the reviewed articles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.