Abstract

The aim of the paper is to formulate and validate a fatigue damage model applicable to disc spring valve systems used in automotive and railway hydraulic shock absorbers. The valve consists of a stack of thin disc springs of varying diameters which are designed to provide a controlled annular flow through a valve system. A disc spring stack is subjected to fatigue damage therefore it has to be accurately designed and validated to provide the required fatigue damage performance and minimise failure risk of shock absorber. The fatigue model developed in this work facilitates a virtual valve system pre-selection process to reduce the required testing capacity, i.e., the number of long-term and expensive fatigue tests performed on servo-hydraulic testing machines. The model accuracy was evaluated using the experimental high-cycle fatigue tests which were conducted on the high-frequency servo-hydraulic load frame machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.