Abstract
ABSTRACTIn this paper, the average stress method for the fatigue limit evaluation of stress raising geometrical features is revised and extended. In particular, an analytical close‐form approach was used and the linear elastic stress equations were modified by taking into account the effect of nominal stress on the local stress distribution. Hence, the average tangential stress was correctly evaluated over a distance of 2a0, where a0 was El Haddad's short crack constant, for long and small notches as well as for crack‐like notches. When this model is applied to a wide range of geometrical features subjected to mode I fatigue loading, the classical shape of the curves of the Kitagawa–Takahashi diagram was obtained for changes in crack‐like notch size. Similarly, notch sensitivity was estimated by reducing the notch tip radius. The accuracy of the proposed method in predicting fatigue limits was then checked by using experimental data taken from the literature and generated on testing specimens weakened by rounded and sharp notches as well as by small artificial defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.