Abstract

Fatigue crack propagation life of weld toe crack through residual stress field was estimated using Elber's crack closure concept. Propagation of weld toe crack is heavily influenced by residual stresses caused by the welding process, so it is essential to take into account the effect of residual stresses on the propagation life of a weld toe crack. Fatigue cracks at transverse and longitudinal weld toe was studied, these two cases represent the typical weld joints in ship structures. Numerical and experimental studies are performed for both cases. Residual stresses near the welding area were estimated through a nonlinear thermo-elasto-plastic finite element method and the residual stress intensity factor with Glinka's weight function method. Effective stress intensity factor was calculated using the Newman-Forman-de Koning-Henriksen equation, which is based on the Dugdale strip yield model in estimating the crack closure level, U, at different stress ratios. Calculated crack propagation life coincided well with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.