Abstract

The main aim of the present study is to investigate the fatigue behavior of single friction stir spot welds (FSSW) using strain-based modified Morrow’s damage equation. The correlation between microhardness, cyclic material constants, and mechanical strength of different zones around the FSSW are assumed to be proportional to the base material hardness. Experimental fatigue tests of friction stir spot welded specimens have been carried out using a constant amplitude load control servo-hydraulic fatigue testing machine. ANSYS finite element code has been used to simulate a single tensile shear friction stir spot welded joint, and non-linear elastic-plastic finite element analysis has been employed to obtain the values of local equivalent stress and strain near the notch roots of the joints. The results based on the numerical predictions have been compared with the experimental fatigue test data. It has been shown that the strain-based approach does a very good job for estimating the fatigue life of friction stir spot welded joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.