Abstract

The damage process of composite materials, such as short fiber-reinforced plastics (SFRP), is complex. Therefore, it is necessary to accurately represent the damage process in fatigue life prediction. Herein, fatigue life prediction was conducted by combining the digital image correlation method, which is a non-destructive testing technique, with a convolutional neural network (CNN), using Xception as the network architecture. High prediction accuracy was obtained when training and testing were performed on the same SFRP specimens. In contrast, using different specimens for training and testing resulted in lower accuracy. This issue may be improved by increasing the number of specimens. The regions of interest in the model were visualized by Gradient-weighted Class Activation Mapping. Notably, the model indicated the breaking point as the region of interest from the early stages of the test. The breaking point was identified at an earlier stage by the CNN than by visual inspection, demonstrating the potential for a new method of damage observation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.