Abstract

The durability of reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) is a worldwide concern in structural engineering. As an important part of the strengthened beam, the performance of the CFRP–concrete interface under hygrothermal environments is a delicate problem. In this paper, the fatigue behavior of CFRP-strengthened RC beams is analyzed by a theoretical model. In the model, CFRP–concrete interface degradation under hygrothermal environments is involved. Since interface debonding and rebar fracture induced by intermediate cracking are two typical failure modes, the damage models of rebar and the CFRP–concrete interface are established. Based on the theoretical model, the failure mode of CFRP-strengthened RC beams can be predicted, and fatigue life can be determined. The results showed that IC debonding is more likely to occur under hygrothermal environments. The accurate prediction of failure modes is essential for fatigue life prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.