Abstract
SUMMARY For dynamically loaded lightweight structures fatigue strength is an important design criteria. In this paper a new method to predict fatigue lifetime is shown. This is based on the combination of frequency domain and time domain calculations, which allows lifetime prediction with reduced computational effort. The method is implemented to work in a concurrent engineering software environment together with a computer aided design (CAD), a finite-element-method (FEM) and a multibody system (MBS) program. The benefits of the new approach are demonstrated by application to the bogie of a freight locomotive. The dynamic loads acting on the bogie are computed by multibody simulation. The bogie frame is considered as an elastic body of the MBS and the highly nonlinear wheel rail contact is modeled quasi-elastically. For the ride on a straight track the equations of motion can be linearized and the covariance matrix of the loads is calculated. The ride through a ramp is simulated by using the nonlinear differential equations. FEM yields the stresses in the most stressed locations of the bogie depending on the loads calculated by multibody simulation. Based on these stresses the fatigue life prediction is carried out in the MBS post-processing program FATIGUE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.