Abstract
Current research papers use simulated load spectrums to assess bogie frames’ fatigue life but seldom consider traction and braking loads. Traction and braking loads play important roles in predicting fatigue life in high-speed and heavy haul operational scenarios. Hence, there is a research gap in terms of the consideration of longitudinal load spectrums while assessing bogie frames’ fatigue life. This paper presents research about this topic. A virtual prototype technique available in literature has been extended for this purpose; it uses multibody dynamics and finite element techniques to simulate the behaviour of bogie frames under real operational service loads. As a result, the special simulation methodology has been developed in this work and it includes the unique integration of simulation approaches that includes train dynamics, locomotive dynamics with the consideration of a traction control algorithm and the adopted fatigue life calculation method. This paper gives numerical examples of a rigid-flexible coupled dynamic railway vehicle model subjected to longitudinal forces. Road Environment Percent Occurrence Spectrum (REPOS) load spectrums of the bogie frame were developed from a whole-trip train simulation on a real route. The spectrums are then used to predict locomotive the bogie frame’s fatigue life. The results of the bogie frame fatigue life evaluation performed in this paper show that fatigue lives at the roots of traction rod seats under longitudinal load spectrums are shorter than their fatigue life under vertical load spectrums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.