Abstract

An estimation method of fatigue strength of adhesively bonded joints with various stress triaxialities in the adhesive layer has been proposed based on a damage evolution model for high cycle fatigue. To realize various triaxial stress states, fatigue test was conducted for adhesively bonded butt and scarf joints with various scarf angles bonded by a rubber-modified epoxy adhesive. An equation for estimating the damage evolution in the adhesive layer of the butt and scarf joints was derived from the damage model, where undefined parameters in the equation were determined by comparing the experimentally obtained damage evolution curves of the butt joints with the estimated damage evolution curves. Furthermore, an equation for the estimation of fatigue strength was derived under the assumption that fatigue failure occurs when the damage variable reaches to a critical value. When compared the experimental S-N data of scarf joints with the estimated ones, the estimated fatigue strengths agree well with the experimental data with various scarf angles. This finding suggests that the CDM model is applicable for estimating fatigue strength of adhesively bonded joints with different stress triaxialities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.