Abstract
AbstractIn this work, the nominal stress concept, the notch stress approach and two critical plane approaches are used to analyse the fatigue endurance of a pipe‐to‐plate welded joint subjected to complex loading histories. Both the pipe and the plate were made of S355JR steel. Starting from already known fatigue endurance curves obtained for the same specimens under pure bending and pure torsion, a first series of tests was conducted, in which specimens were loaded in bending for a given fraction of the estimated life and then in torsion until failure. A similar series of tests was then carried out by changing the loading order: specimens were firstly loaded in torsion for a given fraction of the estimated endurance and then in bending until failure. The whole test campaign was repeated for two different fractions of the estimated life, that is, 0.3 and 0.45, respectively. After that, additional three series of tests were carried out, in which the specimens were subjected to consecutive sequences of bending and torsion blocks of different lengths (short, medium and long, respectively); the relative length of the bending and torsion block in each series was determined in order to produce the same damage. The experimental results, in terms of total damage at failure, were analysed using the Palmgren–Miner hypothesis. For all the assessment methods, the characteristic endurance curves were firstly calibrated on the basis of finite element (FE) analyses and of the experimental results obtained under pure bending and pure torsion loadings. The observed damage at failure resulted always greater than 0.5 for all the employed methods and greater than 1 for most of the tests. The different methods gave similar results, with the critical plane methods giving a slightly more stable damage at failure and a correct determination of the failure location. For all the methods, the damage at failure slightly reduces as the block length shortens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.