Abstract

In this paper, the fatigue hysteresis behavior of unidirectional SiC/Si3N4 ceramic-matrix composite at elevated temperature has been investigated. The hysteresis loops models considering interface friction between fibers and the matrix have been developed to establish the relationships between the fatigue hysteresis loops, fatigue hysteresis dissipated energy and the interface frictional coefficient. Using the experimental fatigue hysteresis dissipated energy, the interface frictional coefficient of SiC/Si3N4 composite at 1000 °C were obtained for different cycle numbers and fatigue peak stresses. The effects of fatigue peak stress, test temperature and cycle number on the evolution of fatigue hysteresis dissipated energy and interface frictional coefficient have been analyzed. It was found that the fatigue hysteresis dissipated energy can be used to monitor the interface debonding and damage evolution inside of the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call