Abstract

Effect of high humidity on growth mechanism of a fatigue crack was investigated for an extruded bar of an age-hardened Al alloy 7075-T6 which had the marked texture of plane (111). Fracture in high humidity occurred by the growth of a shear mode crack under high stress levels, though a crack propagated in a tensile mode under low stress ones, macroscopically. Many voids and slip planes were observed on the fracture surface yielded by the shear mode crack. Especially most of the fracture surface was occupied by voids where the crack was small. The void percentage decreased with increasing in the crack depth. Fracture surface yielded by the shear mode crack was a plane (100). The growth direction of the shear mode crack to the cross section of specimen was about 55° corresponding to the angle composed by this plane and the texture of plane (111). These results suggest that the shear mode crack was related to microstructure, stress and environment. The growth mechanism of the shear mode crack assisted by hydrogen was proposed based on the results of the acceleration of crack growth and the formation of voids in high humidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.