Abstract
Due to the accumulated fatigue damage in steel-concrete continuous composite box beams, a plastic hinge forms in the negative moment zone, leading to significant internal force redistribution. To investigate the internal force redistribution in the negative moment zone and confirm structural safety under fatigue loading, experimental tests were conducted on nine steel-concrete continuous composite box beams: eight of them under fatigue testing, one of them under static testing. The test results showed that the moment modification coefficient at the middle support increases during the fatigue process. When approaching fatigue failure, an increase of 1.0% in the reinforcement ratio or 0.27% in the stirrup ratio results in a reduction of 13% in the moment modification coefficient. Furthermore, a quadratic function model was proposed to calculate the moment modification coefficient of a steel-concrete continuous composite box beam during the fatigue process, which exhibited good agreement with the experimental results. Finally, we verified the applicability of the plastic hinge rotation theory for steel-concrete continuous composite box beams under fatigue loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.