Abstract

A miniature piezoelectric-driven fatigue device with three degrees of freedom is developed. The device integrates two fatigue testing functions, including uniaxial tensile fatigue and tensile-bending combined loading modes. The synchronous tensile-bending loading principle is described, which is applicable for calculating the vector displacements along two orthogonal directions and investigating the anisotropic fatigue properties. Regarding the combined loading mode, maximum load/displacement amplitudes for tensile and bending vector components that could be achieved are 16.9 N/22.8 µm and 3.3 N/5.6 µm, respectively. Based on tensile and tensile-bending combined fatigue loading modes, the displacement responses and fatigue lives at loading frequencies ranging from 1 Hz to 100 Hz are valuated experimentally to indicate the validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.