Abstract

The fatigue behavior of Ti-36.3 wt pct Al and Ti-36.2 wt pct Al-4.65 wt pct Nb alloys was studied in the temperature range room temperature to 900°C. The microstructures of the alloys tested consisted predominantly of γ phase (TiAl) with a small volume fraction of γ phase (Ti3Al) distributed in lamellar form. The alloys were tested to failure in alternate tension-compression fatigue at several constant load amplitudes with zero mean stress. Fracture modes and substructural changes resulting from fatigue deformation were studied by scanning electron microscopy and transmission electron miscroscopy respectively. The ratio of fatigue strength (at 106 cycles) to ultimate tensile strength was found to be in the range 0.5 to 0.8 over the range of temperatures tested. The predominant mode of fracture changed from cleavage type at room temperature to intergranular type at temperatures above 600°C. The fatigue microstructure at low temperatures consisted of a high density of a/3 [111] faults and dislocation debris of predominantly a/2 [110] and a/2 [110] Burger's vectors with no preferential alignment of dislocations. At high temperatures, a dislocation braid structure consisting of all 〈110〉 slip vectors was observed. The changes in fracture behavior with temperature correlated well with changes in dislocation substructure developed during fatigue deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.