Abstract

The fatigue life behaviour and the underlying micromechanisms have been studied in two different Types of unidirectional carbon-fibre-reinforced plastics loaded in tension-tension along the fibre direction. The carbon fibres (AS4) were the same in the two composite systems. One thermoplastic matrix (polyetheretherketone, PEEK) and one thermosetting matrix (epoxy toughened with a thermoplastic additive) were used. The macroscopic fatigue behaviour was characterised by fatigue life diagrams. Surface replicas were taken intermittently during the course of the fatigue tests to monitor the active fatigue damage micromechanisms. The thermoset based composite showed a higher fatigue resistance with few microcracks initiated at distributed fibre breaks growing at a decelerating rate. The thermoplastic composite had a more pronounced fatigue degradation with a steeper fatigue life curve, which was caused by widespread propagating debonds and matrix cracks. The use of a tougher and more ductile matrix results in an inferior fatigue life performance, due to a more widely distributed accumulation of damage that propagates at a higher rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.