Abstract

PurposeComposite materials are increasingly used in the structural and mechanical fields, thanks to their high strength‐to‐weight ratios and the possibility of tailoring them to meet specific requirements. This study is focused on the damage to a glass fiber reinforced composite under different loading conditions. The aim is to find, by coupling mechanical tests with thermal analyses, a damage parameter, able to define the damage initiation in the studied material.Design/methodology/approachThe object of this work is a glass‐fiber reinforced plastic (GFRP) laminate. To study the damage of this material under different loading conditions, static, dynamic and fatigue tests were carried out. During these tests, the surface temperature of the specimens was monitored by means of an IR‐camera. In the dynamic tests, a D‐mode (dissipation mode) analysis was also performed allowing the dissipated energy to be determined.FindingsIn the literature, thermography is an experimental technique which has always been applied to the study of homogeneous materials. Results obtained from the proposed experimental tests on this GFRP composite show how this practice can be applied also to this kinds of materials, to identify their damage initiation. From these observations, the results can be used to definite a stress corresponding to the damage initiation, which can be related to the fatigue behavior, and useful in design stage with these materials.Originality/valueThis paper provides for a useful tool to understand and predict fatigue behavior of a GFRP composite, from thermographic observations. Applications of thermography to the study of composite materials is an innovative research field, and the presented results seems satisfactory and promising for further experimental investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.