Abstract

The fatigue damage evolution and property degradation of aSCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite under low cycle fatigue loading at room temperature was investigated. The fatigue test was conducted under a load-controlled mode with a load ratio (>R>) of 0.1, a frequency of 10 Hz, and a maximum applied stress ranging from 600 to 945 MPa. The stiffness reduction as well as the evolution of microstructural damage which includes matrix crack length, matrix crack density and interfacial debonding length as a function of fatigue cycles, and applied stresses were measured. An analytical model and a computer simulation were also developed to predict the residual stiffness and the post-fatigued tensile strength as a function of microstructural damage. Finally, a steady-state crack growth model proposed by Marshallet al., was used to predict the interfacial frictional stress and the critical crack length. Correlation between the theoretical predictions and experimental results were also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.