Abstract
The ultimate strength of most structural materials is mainly limited by the presence of microscopic imperfections serving as nuclei of the fracture process. Since these nuclei are considerably shorter than the acoustic wavelength at the frequencies normally used in ultrasonic nondestructive evaluation (NDE), linear acoustic characteristics are not sufficiently sensitive to this kind of microscopic degradation of the material's integrity. On the other hand, even very small imperfections can produce very significant excess nonlinearity which can be orders of magnitude higher than the intrinsic nonlinearity of the intact material. The excess nonlinearity is produced mainly by the strong local nonlinearity of microcracks whose opening is smaller than the particle displacement. Parametric modulation via crack-closure significantly increases the stress-dependence of fatigued materials. A special experimental technique was introduced to measure the second-order acousto-elastic coefficient in a great variety of materials including plastics, metals, composites and adhesives. Experimental results are presented to illustrate that the nonlinear acoustic parameters are earlier and more sensitive indicators of fatigue damage than their linear counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.