Abstract

Fatigue damage involving creation of point defects has been revealed by means of hydrogen thermal desorption analysis, utilizing hydrogen as a probe of defects. Two types of high-strength martensitic steels were subjected to a rotational bending test for various cycles. The amount of absorbed hydrogen decreased or was almost constant in the early stage of the fatigue process and then began to increase after a substantial number of fatigue cycles. The increase in the final stage was due to the creation of point defects, presumably vacancies, while the decrease in the early stage was ascribed to changes in microstructural constitutions. Hydrogen-precharging drastically reduced the fatigue life, but the effect of hydrogen on the fatigue limit was not significant. The fracture surface of hydrogen-precharged specimens was smooth without cleavage-like crystallographic features. The defect density in fractured specimens in the presence of hydrogen was higher than in specimens fatigued for a similar number of cycles without hydrogen. Involvement of hydrogen in fatigue damage in the crack nucleation and growth stages is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.